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Introduction

Introduction

In this module, we review the basics of hypothesis testing.

We shall develop the binomial distribution formulas, show how they
lead to some important sampling distributions, and then investigate
the key principles of hypothesis testing.
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The Binomial Distribution Definition and an Example

The Binomial Distribution

A binomial process is characterized by the following:

1 There are n independent trials

2 Only two things can happen on each trial. We might arbitrarily label
them “success” and “failure.”

3 The probabilities of “success” and “failure” are π and 1− π.

The binomial random variable Y is the number of successes in the n
trials.

Of course, Y is a random variable, and the number of successes that
actually occur in any sequence is uncertain unless π = 0 or π = 1.

The binomial distribution p(y) = Pr(Y = y) assigns probabilities to
each (potential) number of successes.
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The Binomial Distribution Definition and an Example

The Binomial Distribution

Example (The Binomial Distribution)

A couple plans to have 4 children, and to allow the sex of the child to be
determined randomly. Assume that the probability of any child being a boy
is 0.51. What is the probability that of the 4 children, there are exactly 3
boys and 1 girl?

We’ll load the code in full.binomial.txt and use the function to generate
the entire probability distribution:

> full.binomial <- function(n, pi) {
+ a <- matrix(0:n, n + 1, 1)

+ b <- dbinom(a, n, pi)

+ c <- pbinom(a, n, pi)

+ result <- cbind(a, b, c, 1 - c)

+ rownames(result) <- rep("", n + 1)

+ colnames(result) <- c("y", "Pr(Y = y)", "Pr(Y <= y)", "Pr(Y > y)")

+ return(result)

+ }
James H. Steiger (Vanderbilt University) 5 / 30



The Binomial Distribution Definition and an Example

The Binomial Distribution

Example (The Binomial Distribution)

As you can see, the probability of having exactly 3 boys is just a smidgen
below 0.26. The probability of having more girls than boys is Pr(Y ≤ 1),
or roughly 0.298.

> full.binomial(4, 0.51)

y Pr(Y = y) Pr(Y <= y) Pr(Y > y)

0 0.05765 0.05765 0.94235

1 0.24000 0.29765 0.70235

2 0.37470 0.67235 0.32765

3 0.26000 0.93235 0.06765

4 0.06765 1.00000 0.00000
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The Binomial Distribution Derivation of the Binomial Distribution Formula

Derivation of the Binomial Distribution Formula

We shall develop the binomial distribution formula in terms of the
preceding example.

In this example, there are 4 “trials”, and the probability of “success”
is 0.51.

We wish to know Pr(Y = 3).

To begin, we recognize that there are several ways the event Y = 3
might occur. For example, the first child might be a girl, and the next
3 boys, i.e., the sequence GBBB. What is the probability of this
particular sequence?
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The Binomial Distribution Derivation of the Binomial Distribution Formula

Derivation of the Binomial Distribution Formula

Since the trials are independent, we can say
Pr(GBBB) = Pr(G ) Pr(B) Pr(B) Pr(B). This probability is
0.49× 0.51× 0.51× 0.51 = .513 × .491 = 0.06499899

This is just a smidgen below .065.

Since the order of multiplication doesn’t matter, we quickly realize
that any other sequence involving 3 boys and 1 girl will have this
same probability.

Suppose there are k such sequences. Then the total probability of
having exactly 3 boys is k × .513 × .491. More generally, we can say
that the probability of any particular sequence involving y successes is
πy × (1− π)n−y , and so

Pr(Y = y) = k × πy × (1− π)n−y

But what is k?
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The Binomial Distribution Derivation of the Binomial Distribution Formula

Derivation of the Binomial Distribution Formula
Combinations

In Psychology 310, we learned the basic combinatorial formulas. A
key formula is the number of ways y objects can be selected from n
distinctly different objects without respect to order.

For example, you have the 4 letters A,B,C,D. How many different sets
of size 2 may be selected from these 4 letters?

This is called “the number of combinations of 4 objects taken 2 at a
time,” or “4 choose 2.”

James H. Steiger (Vanderbilt University) 9 / 30



The Binomial Distribution Derivation of the Binomial Distribution Formula

Derivation of the Binomial Distribution Formula
Combinations

In Psychology 310, we learned the basic combinatorial formulas. A
key formula is the number of ways y objects can be selected from n
distinctly different objects without respect to order.

For example, you have the 4 letters A,B,C,D. How many different sets
of size 2 may be selected from these 4 letters?

This is called “the number of combinations of 4 objects taken 2 at a
time,” or “4 choose 2.”

James H. Steiger (Vanderbilt University) 9 / 30



The Binomial Distribution Derivation of the Binomial Distribution Formula

Derivation of the Binomial Distribution Formula
Combinations

In Psychology 310, we learned the basic combinatorial formulas. A
key formula is the number of ways y objects can be selected from n
distinctly different objects without respect to order.

For example, you have the 4 letters A,B,C,D. How many different sets
of size 2 may be selected from these 4 letters?

This is called “the number of combinations of 4 objects taken 2 at a
time,” or “4 choose 2.”

James H. Steiger (Vanderbilt University) 9 / 30



The Binomial Distribution Derivation of the Binomial Distribution Formula

Derivation of the Binomial Distribution Formula
Combinations

In general, we ask, what is n choose y .

This quantity is often symbolized with the notations
(n
y

)
or (less

frequently) nCy .

This can be computed as the following ratio of two products.(
n

y

)
=

The product of the y integers counting down from n

The product of the y integers counting up from 1

In the preceding example, this is

4× 3× 2

3× 2× 1
=

24

6
= 4
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The Binomial Distribution Derivation of the Binomial Distribution Formula

Derivation of the Binomial Distribution Formula
Combinations

There are several relationships involving combinations.

The most important one is that(
n

y

)
=

(
n

n − y

)
because, for every selection of y objects, there is a corresponding
(de-)selection of n − y objects.

So, when solving for
(n
y

)
, choose w = min(y , n− y) and compute

(n
w

)
.

Although the preceding formula is computationally much more
efficient, many textbooks prefer to present(

n

y

)
=

n!

y !(n − y)!
(1)

where y ! is the product of the integers from y to 1.
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The Binomial Distribution Derivation of the Binomial Distribution Formula

Derivation of the Binomial Distribution Formula
Combinations

The combinations formula relates to the binomial distribution.

Recall that we were interested in computing k, the number of
different sequences of n trials that produce exactly y successes.

This can be computed as follows. Suppose we code each sequence by
listing the trials on which the “successes” occur.

For example, the sequence BBGB can be coded as 1,2,4.

It then becomes clear that the number of different 4-trial sequences
yielding exactly 3 successes is equal to the number of ways we can
select 3 trial numbers out of 4. This is, of course

(4
3

)
, or, more

generally,
(n
y

)
. So the final binomial distribution formula is

p(y |n, π) = Pr(Y = y |n, π) =

(
n

y

)
πy (1− π)n−y (2)

Fortunately, this is computed for us with the R function dbinom.
James H. Steiger (Vanderbilt University) 12 / 30



The Binomial Distribution The Binomial Distribution as a Sampling Distribution

The Binomial Distribution as a Sampling Distribution

The binomial distribution gives probabilities for the number of
successes in n binomial trials.

However, since each number of successes yi corresponds to exactly
one sample proportion of successes yi/n,we see that we also have
derived, in effect, the distribution of the sample proportion p.

For example, we previously determined that the probability of exactly
3 boys out of 4 is roughly 0.26, and this implies that the probability
of a proportion of 3/4 = .75 is also 0.26.
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Hypothesis Testing

Hypothesis Testing
Parameters, Statistics, Estimators, and Spaces

A parameter, loosely speaking, as a numerical characteristic of a
statistical population.

A statistic is any function of the sample.

An estimator of a parameter is a statistic that is used to approximate
the parameter from sample data. The observed value of an estimator
is an estimate of the parameter.

The parameter space is the set of all possible values of the parameter.

The sample space is the set of all possible values of the statistic
employed as an estimator of the parameter.
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Hypothesis Testing

Hypothesis Testing
Null and Alternative Hypotheses

A statistical hypothesis is a statement that specifies a region of the
parameter space.

A hypothesis test is a procedure that defines rules for deciding, on the
basis of an estimate, between two or more mutually exclusive
statistical hypotheses.

Often, but not always, the hypothesis involves two mutually exclusive
and exhaustive hypotheses.

In the classic Reject-Support hypothesis-testing framework, one of the
hypotheses, H1, represents the experimenter’s belief (or what the
experimenter is trying to demonstrate. This hypothesis is called the
alternative hypothesis.

The statistical null hypothesis, H0, is actually the opposite of what
the experimenter believes, and so rejecting this hypothesis supports
the experimenter’s belief.

James H. Steiger (Vanderbilt University) 15 / 30
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Hypothesis Testing

Hypothesis Testing
An Example

Example (A Hypothesis Test)

In section 4.1 RDASA3 presents an introductory example involving
guessing in an ESP experiment. A subject, Rachel, attempts to guess
which of 4 cards has been selected, and performs the guessing task for a
sequence of 20 trials. The experimenter chooses one of the 4 cards
randomly on each trial, and so, in the example, MWL state the null and
alternative hypotheses are

H0 : π = 0.25, and H1 : π > 0.25

How would you describe these hypotheses substantively? (C.P.)
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Hypothesis Testing

Hypothesis Testing
An Example

Example (A Hypothesis Test (ctd))

One might ponder this choice of hypotheses. Clearly, if no information is
being transmitted to Rachel, and the cards are truly selected
independently and at random by the experimenter, then her long run
probability of success, no matter what strategy she employs, is π = 0.25.
However, it is possible that information is transmitted to her, but, because
she has “negative ESP,” she achieves a success rate lower than 0.25.

With this in mind, I prefer a pair of mutually exclusive and exhaustive
hypotheses, such as

H0 : π = 0.25, and H1 : π 6= 0.25

or
H0 : π ≤ 0.25, and H1 : π > 0.25

How would you describe these hypotheses substantively? (C.P.)
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Hypothesis Testing

Hypothesis Testing
The Critical Region Approach

MWL discuss (boxes 4.1–4.2, pages 75–76) two approaches to
hypothesis testing.

One approach is the p-value approach, described in Box 4.1.
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Hypothesis Testing

Hypothesis Testing
The p-Value Approach

Let’s work the problem in terms of the null and alternative hypotheses
stated by MWL, namely

H0 : π = 0.25, and H1 : π > 0.25

Let’s assume our test statistic is Y , the number of correct responses.

Furthermore, assume that the significance level is α = .05.

We’ve already decided that, under H0, a reasonable assumption is
that trials are independent and random, and that π = .25, and so it is
implied that Y has a distribution that is B(20, 0.25), i.e, binomial
with parameters n = 20 and π = 0.25.

The p-value of the observed result y is the probability of obtaining a
result as extreme as y and be consistent with H1. To be consistent
with H1, y needs to be large.

Therefore, we use the binomial distribution calculator to compute the
probability of obtaining Y ≥ y if the distribution is B(20, 0.25).

If this p − value is less than or equal α, then we say that our result is
“significant at the α level.”
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Hypothesis Testing

Hypothesis Testing
The p-Value Approach

Let’s see how that works. We need to compute the total probability
of obtaining a result as extreme or more than the obtained value.

That’s really easy to do in R, because its probability functions are
vectorized, and will operate simultaneously on a range of values.

Suppose Rachel answers 9 out of 20 correct. We compute

> options(scipen = 9, digits = 4)

> sum(dbinom(9:20, 20, 0.25))

[1] 0.04093

Since the p-value of 0.0409 is less than 0.05, we reject the null
hypothesis “at the .05 significance level.”

Note — some people would say the result is “significant beyond the
.05 level.”

Note also that, because the binomial distribution is discrete, only
n + 1 p-values are possible.
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Hypothesis Testing

Hypothesis Testing
The Critical (Rejection) Region Approach

With the Critical Region approach, we specify, in advance, which
values of the test statistic will cause us to reject the statistical null
hypothesis.

To have a “significance level” (α) of 0.05, we must control the
probability of incorrectly rejecting a true H0 at or below .05.

When the test statistic distribution is discrete, it is usually impossible
to control the probability of an incorrect rejection at exactly 0.05.
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Hypothesis Testing

Hypothesis Testing
The Critical (Rejection) Region Approach

So, in practice, what we do in the discrete case

1 Start at the most extreme possible value (y = n in this case) in the
direction of H1.

2 Start adding up the p(y) values, moving in from the end.

3 Stop as soon as the current sum of the p(y) values exceeds α. This
means that the preceding y value demarcates the critical region.
Values of the statistic at or above that value are in the rejection region.

4 An easy way to do this is to use the full.binomial function, and
look in the column labeled Pr(Y > y). Find the largest value in that
column that is still below .05. Then, choose the value of y immediately
above that to demarcate the rejection region.

To see if you are catching on, answer the following. What would be
the critical value of y if a significance level of 0.01 is desired? If that
value of y is used, what is the true probability of incorrectly rejecting
a true H0?
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Hypothesis Testing

Hypothesis Testing
Null and Alternative Hypotheses

In Psychology 310, we discussed in detail the 2× 2 table representing
the standard decision possibilities, and their probabilities that hold
when the null and alternative hypotheses and the decision regions
partition the sample space into mutually exclusive and exhaustive
regions.

State of the World

Decision H0 True H0 False

Accept H0 Correct Acceptance (1− α) Type II Error (β)
Reject H0 Type I Error (α) Correct Rejection (1− β)
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One-Tailed vs. Two-Tailed Tests

One-Tailed vs. Two-Tailed Tests

The significance test we discussed in the preceding section was
designed in a situation where only one rejection region was required.
Such a test is referred to as one-tailed or one-sided.

However, many traditional significance tests in the social sciences and
education involve two rejection regions, and are therefore referred to
as two-tailed or two-sided tests.

As an example, suppose you flip a fair coin 20 times to see if it is not
“fair.” In this case, we operationalize the notion of fairness in the null
hypothesis as

H0 : π = 0.50

Note that the coin is unfair if π is any value other than 0.50, so we
state the alternative hypothesis as

H1 : π 6= 0.50
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One-Tailed vs. Two-Tailed Tests

One-Tailed vs. Two-Tailed Tests

In this situation, values of y either much lower than 10 (out of 20) or
much higher than 10 can be cause to reject H0. So how do we handle
this situation to produce a significance level (α) of 0.05?

In this case, we start counting in from both sides (up from 0, down
from 20)

1 The total probability of rejecting a true H0 is as close to 0.05 as
possible without exceeding 0.05.

2 The probabilities in the two rejection regions are as close to each other
as possible. (Note that in this case, the binomial distribution is
perfectly symmetric and this is relatively easy to do.)
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One-Tailed vs. Two-Tailed Tests

One-Tailed vs. Two-Tailed Tests

We generate the B(20,0.50) distribution.

> full.binomial(20, 0.5)

y Pr(Y = y) Pr(Y <= y) Pr(Y > y)

0 0.0000009537 0.0000009537 0.9999990463

1 0.0000190735 0.0000200272 0.9999799728

2 0.0001811981 0.0002012253 0.9997987747

3 0.0010871887 0.0012884140 0.9987115860

4 0.0046205521 0.0059089661 0.9940910339

5 0.0147857666 0.0206947327 0.9793052673

6 0.0369644165 0.0576591492 0.9423408508

7 0.0739288330 0.1315879822 0.8684120178

8 0.1201343536 0.2517223358 0.7482776642

9 0.1601791382 0.4119014740 0.5880985260

10 0.1761970520 0.5880985260 0.4119014740

11 0.1601791382 0.7482776642 0.2517223358

12 0.1201343536 0.8684120178 0.1315879822

13 0.0739288330 0.9423408508 0.0576591492

14 0.0369644165 0.9793052673 0.0206947327

15 0.0147857666 0.9940910339 0.0059089661

16 0.0046205521 0.9987115860 0.0012884140

17 0.0010871887 0.9997987747 0.0002012253

18 0.0001811981 0.9999799728 0.0000200272

19 0.0000190735 0.9999990463 0.0000009537

20 0.0000009537 1.0000000000 0.0000000000
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One-Tailed vs. Two-Tailed Tests

One-Tailed vs. Two-Tailed Tests

We start working up from the bottom, looking for a cumulative
probability that is close to α/2 = 0.025 without exceeding it. We see
that a lower rejection region of y ≤ 5 has a total probability of 0.0207.

Careful examination of the upper end of the distribution shows that
an upper rejection region of y ≥ 15 will also have a total probability
of 0.0207.

So with these two rejection regions, the total probability is 0.0414.

But — what about the p-value approach?

The tradition there is to compute the p-value of an observation as if
the test were one-sided (using whichever rejection region is closer to
the observed value of y , and then double it.

So, if a value of 7 is observed, you compute the p-value as

> 2 * sum(dbinom(0:7, 20, 0.5))

[1] 0.2632

Since this value is higher than 0.05, H0 cannot be rejected at the 0.05
level.
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A General Approach to Power Calculation

The Power of a Statistical Test

The power of a statistical test for a state of the world in which H0 is
false is defined as the probability of rejecting H0 under that state of
the world.

MWL summarize the general approach to power computation in Box
4.3 of RDASA3.
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A General Approach to Power Calculation

Power Calculation
An Example

Example (Power Calculation)

Suppose we are testing H0 : π = 0.50 with n = 20 and α = 0.05, with
resulting dual rejection regions of 0 ≤ Y ≤ 5 and 15 ≤ Y ≤ 20.

What is the statistical power if the true state of the world is that π = .80?

Solution. We use R to compute the probability of a rejection

> sum(dbinom(0:5, 20, 0.8)) + sum(dbinom(15:20, 20, 0.8))

[1] 0.8042

In this case, power is 0.8042. The fact that the null hypothesis is false by
a large amount is enough to offset the very small sample size of n = 20.
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A General Approach to Power Calculation Factors Affecting Power: A General Perspective

Factors Affecting Power
A General Perspective

All other things being equal, there are several factors that affect
statistical power:

1 The amount by which the null hypothesis is false. In Reject-Support
testing, this is often referred to as the “effect size.” The larger the
effect size, the larger the power.

2 Sample size. The larger the sample size, the larger the power.

3 Significance level. The larger (“more liberal”) the α, the larger the
power.

4 Number of tails. A one-tailed hypothesis, provided the directionality is
correct, puts a larger rejection region on the side of the true state of
the world (for a given α), thereby increasing power.

5 Reducing error variance. Error is like noise in an experimental design,
and the experimental effect is like a signal. With careful, efficient
experimental design, aspects of a study that might be lumped in with
“error” get partialled out as a planned source of variation. This
reduction of noise makes it easier to “receive the signal,” and results in
higher statistical power for the test of interest.
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5 Reducing error variance. Error is like noise in an experimental design,
and the experimental effect is like a signal. With careful, efficient
experimental design, aspects of a study that might be lumped in with
“error” get partialled out as a planned source of variation. This
reduction of noise makes it easier to “receive the signal,” and results in
higher statistical power for the test of interest.
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